
Cypherock X1
Audit By KeyLabs
Public Response to Keylabs Audit of

Cypherock – Q3 2022

Executive Summary

KeyLabs Unmodified Report

The Cypherock X1 is an innovative wallet that
uses many hardware and software security
best practices and even features several
security firsts that we have not yet seen in
other wallets. These include hardware
attestation through manufacturer BIP39
derived signatures, the use of several
JavaCard based NFC as a kind of multifactor
authentication at the time of signing and
Shamir Secret Sharing for storing the bip39
seed phrase of the user. Unlike most other
wallets, the Cypherock wallet leverages the
security of several independent integrated
circuits on multiple devices. This includes the X1
Cards (“the cards”), as well as the STM32L4 that
is used in conjunction with the ATECC608A
(secure element) on the X1 wallet (“the wallet”).
The security of the overall Cypherock wallet is
based on the security of several devices
working together. As a result the compromise
of a single device or card is insufficient to
compromise the seed and/or funds stored on
the wallet. Additionally, the JavaCards are
EAL5+ certified and the ATECC608A, as well as
the STM32L4 do not currently have any known
and publicly documented hardware
vulnerabilities, which means they can also be
considered reasonably secure. Cypherock
quickly provided fixes for all the findings. These
fixes were subsequently verified by Keylabs.

Cypherock’s Response

Cypherock chose Keylabs for a security audit
of the because of their expertise
and experience in hardware wallet security
audits.

Cypherock X1

You can check out more details about Keylabs
at . The final audit report can be
found .

keylabs.io
here

Page 2

 Overview

KeyLabs Unmodified Report

An audit of the X1 wallet hardware and
firmware was conducted to identify potential
security issues in this device. As the X1 wallet
uses a consumer grade microcontroller it is
reasonable to assume that this will be the
weakest link in the Cypherock. However,
because it is secured by the 608A and
provisioned at manufacturing time, the attack
surface is in fact quite limited. For example,
trivial attacks such as replacing the STM32L4
with a malicious STM32L4 is not possible
because of how the STM32 is paired with the
608A. Moreover there are currently no known
publicly documented attacks against the
STM32L4 or the ATECC608A.

Cypherock’s Response

The scope of this audit includes the X1
wallet’s(the device) Architecture, hardware,
and firmware(application and bootloader).

 1) Threat Model

KeyLabs Unmodified Report

Architectural vulnerabilities are vulnerabilities
affecting the overall architecture of the
hardware wallet.

 In practice, architectural vulnerabilities
encompass many forms of supply chain
attacks, for example, replacing any
component on the device

 Because Cyperock provisions the X1 Cards
during production, it is likely that these will
not be exploitable in practice

 Because Cypherock programs both the
STM32L4 and the ATEC608A during
manufacturing and both of these in turn
generate a pairing key for their
communication, it is impossible to simply
replace either of these components, for
example, with an STM32L4 running malicious
firmware

 The signing keys, derived from a Cypherock
specific BIP32 seed, also ensure software
security and secrets that are then loaded
into all of the components.

Firmware vulnerabilities are vulnerabilities
affecting the software that runs on the
hardware wallet.

 Firmware vulnerabilities can affect the
overall security of the wallet, in particular
vulnerabilities in the bootloader.

 Since the Cypherock utilizes a Shamir Secret
Sharing protocol for splitting the
cryptographic seed, exploiting the physical
wallet requires also exploiting at least one of
the X1 Cards

 Because the X1 Cards are EAL5+ certified
and run a vendor certified OS, whilst the
Cypherock specific code is running in an
JavaCard applet, it’s reasonable to assume,
that an attacker will not be able to exploit
the device in practice as long as industry
best practices such as PINs and counters
are used.

Hardware vulnerabilities are vulnerabilities
affecting the underlying hardware
components of the hardware wallet.

 The STM32 family is known to be exploitable.
Such an attack would allow an attacker to
for example downgrade the X1 Wallet to
RDP1 and read RAM

 However, these attacks do not apply in
practice to the STM32L4 since it lacks an
external Vcore voltage that can be exploited
with hardware. Moreover there is reason to
believe that PCROP capable STM32
microcontrollers are less exploitable in
practice, which the STM32L4 is.

Physical vulnerabilities are vulnerabilities
affecting the hardware design of the hardware
wallet.

 Physical vulnerabilities include ease of
access to the hardware.

 The device tested as part of this
assessment lacked any sort of potting to
protect the surface of the PCB. However, the
final version will include conformal coating,
which will make direct physical access to
the circuit more difficult.

Software vulnerabilities are vulnerabilities
affecting the host software that runs on the PC
or smartphone and communicates with the
hardware wallet.

 Software vulnerabilities were not considered
as part of this audit.

 Software running on the host can be easily
updated and fixed. Hence, software
vulnerabilities were not analyzed as part of
this audit.

Cypherock’s Response

A threat model was identified to segregate
different types of attacks on the hardware
wallet. The threat model also identifies security
measures employed at different layers in the
hardware wallet.

Page 3

 2) High-Level Overview

KeyLabs Unmodified Report

The X1 Wallet (the Device) is made up of one
MCU, the STM32L4 and two peripheral ICs: the
ATECC608A which provides device
authentication. Additionally an NXP PN5321
provides NFC communication to the smart
cards. The sole purpose of a cryptocurrency
hardware wallet is to prevent leakage of the
seed, or derived key, during operation of a
cryptocurrency signing operation. Cypherock
has chosen to create the seed and then split it
among a quorum of NFC cards (X1 Cards). The
X1 Cards are running a custom Java Card
applet and have not been investigated further
as part of the audit. There are several attack
vectors to recover the seed, but the one to
focus on is attacking the STM32L4 from either
hardware or software because ultimately, the
seed is exposed on this MCU. This MCU is not a
MCU rated for security. According to ST, only
the Secure Boot and Secure Firmware Update
(SBSFU) has received the SESIP Level 3
certification, whereas the chip itself has only
received the lowest self-assessment from ARM
PSA level 1.1 In general this means that sensitive
operations on the ST32L4 should be kept to a
minimum

Cypherock’s Response

The X1 Card’s custom Java Card applet was
not investigated by Keylabs as part of this
audit.

X1 Cards were audited by SERMA SAFETY AND
SECURITY ITSEF who have expertise in Javacard
security, here is their response after the audit
was done:

“Cypherock hired SERMA SAFETY AND
SECURITY ITSEF for an independent security
audit of the X1 Cards source code. After
multiple security iterations, SERMA attests that
X1 Cards do not have any security
vulnerabilities to the best of our knowledge.”

 3) Hardware Review

KeyLabs Unmodified Report

While the rating of the smart cards may have
an EAL5+ rating, the entire security of this
system is as strong as its weakest link which is
the STM32L4. Thus, the two most important
defensive mechanisms are the hardware
protection set against debug readout and the
software code quality. The STM32F2 has a well-
known RDP bypass. In 2017, ST, presumably in
response to some of the hardware attacks,
added a feature called Proprietary code read
out protection (PCROP).2 PCROP ensures that
flash sectors are execute only and is essential
to ensure proper glitch protection. PCROP
ensures that memory continents within
protected sectors cannot be accessed via the
BootROM Bootloader (STM32 Bootloader). This
is especially the case when code execution
can be gained within the application code, for
example, by only rewriting part of the flash,
then executing it. Additionally, glitches on chips
running at RDP2 of the STM32 family have been
known to induce RDP1 behavior, re-enabling
the embedded BootROM Bootloader and
yielding a device that behaves identically to a
chip at RDP1. This means that an attacker can
relatively easily gain access and utilize the
BootROM bootloader for reading sensitive data
from the device. The attack could read the
code out for example to discover an exploit.
The firmware should utilize the STM32 PCROP
feature, which is available on the STM32L4. This
feature is not set by the Cold Card3 nor the
Trezor T. The Trezor T sets Write Protection on
the sectors utilized by the Bootloader, however.
In both cases, the bootloaders of the Cold Card
and the Trezor T are open source and not
proprietary. PCROP, would ensure that a
glitching attack would not succeed in reading
any data from these memory regions.

Cypherock’s Response

While the PCROP does add extra security by
making the protected section execute only, but
it does not protect read-only data. The X1
Wallet's firmware is already open-source and
we also plan on making the bootloader
firmware open-source soon. Thus using PCROP
to prevent reading of execute-only memory
segment does not add any extra security. To
protect access to read-only data, we use the
Firewall feature present on STM32L4, but unlike
PCROP it is not set in option bytes but enabled
by the bootloader itself.

1 https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/group0/75/95/53/70/8d/2e/4d/79/
flyerstm32trust/files/flstm32trust.pdf/jcr:content/translations/en.flstm32trust.pdf

2 https://www.st.com/resource/en/application_note/an4968-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-
microcontrollers-stmicroelectronics.pdf

3 https://github.com/Coldcard/firmware/blob/d7c41ce88ee06864583574d87b25e3edf4573041/stm32/bootloader/storage.c#L503

Page 4

 4) Firmware Review

KeyLabs Unmodified Report

Hardware Security is only as good as the
underlying firmware. For example, a more
appropriately secure MCU, the LPC55S69 with
the latest ARM Cortex for TrustZone-M, PUFs,
hardware accelerators, and more, has a DFU
bootROM bug that bypass secure boot. As a
result, any applications running on this device,
offering significantly more security features
than the STM32, are now vulnerable. Similarly,
in a hardware wallet, that is likely to not be
updated in the field, the firmware quality,
especially all drivers that interface with the
external world and the bootloader, are
especially critical. Several vulnerabilities were
identified in the firmware. For example, the
random number generation function, which is
a bedrock primitive for cryptography, ignores
result codes from both of the hardware
random number functions.4 It ignores the
random value from the ATECC608, for which
there is no authentication from the random
command and can easily be spoofed, and it
ignores the STM32 RNG which can timeout and
fail.5 Additionally, there is no clear Software Bill
of Materials (SBOM) therefore it’s not readily
apparent what third parties’ libraries are used,
what versions, and if they have been modified
or not. For example the Microchip
CryptoAuthLib being used is from 2017.
Additionally, this library is so dated, it does not
even have a version number. There have been
security relevant patches to this library since
2017. The current supported release is 3.3.3
released in November, 2021. Similarly, the
bootloader also does not have a SBOM but
uses third party libraries. There are additional
examples of security critical code that does not
adequately check return values such as in the
RandomDelay function.6 We recommend
creating an internal document with security
relevant SBOMs for both the bootloader and
firmware and evaluating them as part of
developing an overall threat model

Cypherock’s Response

Though the RNG vulnerability is important, it
was easily resolvable and was updated and
released with firmware version 0.4.267.

 - RNG Fix Ref: , Link_1 Link_2

Other fixes were also made to return code
checking of security-relevant components in
the bootloader and application firmware.

As recommended, we have also prepared and
shared an internal SBOM documenting all
third-party libraries used in our codebase. We
will be tracking security-relevant updates in
these libraries and importing the same in our
code base as required.

 5) Key Management

KeyLabs Unmodified Report

The Cypherock uses a key derivation chain for
supply chain security, except using NIST P256
curves as that is what is supported in the
ATECC and the NFC cards. Cypherock shared
their internal key management and
provisioning architecture with Keylabs.
Additionally, Keylabs has reviewed the device
provisioning authorization documentation
which is publicly available.7 Cypherock is
adequately protecting the provisioning root
keys.

Cypherock’s Response

The X1 Wallet and X1 Cards provisioning is
performed by Cypherock before shipping them
to users using a common seed phrase. The
seed phrase is secured by a provisioning
device which is just an X1 Wallet with special
firmware. Seed phrases are stored as a wallet
and distributed within X1 Cards which are
geographically distributed.

4 https://github.com/Cypherock/x1wallet_firmware/blob/761a8ce86ed7a797ffd285ecd11c9db8dbcb96da/common/libraries/util/utils.c#L275

5 https://github.com/Cypherock/x1wallet_hal_stm32/blob/024f8a631d9b62cd0223e413ba605fc70bcb3a22/Drivers/STM32L4xx_HAL_Driver/Src/
stm32l4xx_hal_rng.c#L657

6 https://github.com/Cypherock/x1wallet_bootloader/blob/579c4c507d335848acb75fb277a1c1103c882f2a/Application/Bootloader/random_gen/
crypto_random.c#L47

7 https://github.com/Cypherock/x1_wallet_firmware/blob/main/docs/device_provision_auth.md

Page 5

 2. Findings

 1) Test points easily accessible on the wallet

 (Severity: Low)

KeyLabs Unmodified Report

There are numerous test points on the devices
that are visible leads to all the relevant
communication between the main
microcontroller, the NFC interface and the
ATECC. Though not directly exploitable, such
test points do make it significantly easier to
sniff and interface the device. More importantly
such test points can be utilized to build a
programming jig that can quickly and easily
interface with the device as part of a physical
evil maid attack and/or as part of a supply
chain attack. Interfacing to an already
manufactured device is so straightforward that
it may be difficult to detect such malicious
access as part of a forensics analysis by the
manufacturer or the user.

Cypherock’s Response

While test points are present on the NFC and
ATECC ports, the communication is immune to
sniffing as we have considered man-in-the-
middle attacks and handled them in the
device firmware. All sensitive data
communicated between these interfaces is
encrypted. Additionally, no debug pins are
exposed on the PCB with test points and are
disabled in the device.

 2) ATECC608A placed with two footprints

 (Severity: Low)

KeyLabs Unmodified Report

The ATECC608A has two footprints on the
device. Essentially, the larger footprint is even
more accessible and easy to access,
effectively providing test points for the
ATECC608A and further reducing the amount
of effort required to interface to the device.
Since the larger package is not used on the
device, the larger footprint pinout should be
removed.

Cypherock’s Response

ATECC is at the core of X1 Wallet's security.
Because of its long lead times, we added two
footprints on the device to use whichever
package is available faster and avoid
problems due to its unavailability. Also
removing the extra package will not add any
significant difficulty in sniffing the ATECC.

 3) PCB Marking readily available

 (Severity: Low)

KeyLabs Unmodified Report

Though they don’t directly have a security
implication, for a device that is not going to be
serviced in the field, the PCB marking should be
removed in the final manufactured version.
This can be as simple as omitting the PCB
solder mask markings on the side of the device
that contains the microcontroller and security
relevant components, whilst, for example,
leaving a device board revision, manufacturer
and device names and copyright notices on
the reverse side. In particular such markings
make any test points that are left on the device
particularly easy to identify and group.

Cypherock’s Response

Removing markings from the PCB makes it
hard to sniff but also adds to the
manufacturing complexity of the device. While
it might be good to have but in our opinion, it is
not fruitful as our firmware is already open-
source.

Page 6

 4) Device does not use newer ATECC608B

 (Severity: Low)

KeyLabs Unmodified Report

Microchip released the ATECC608B, which they
describe as a “security-enhanced version of
the ATECC608A”.8 It’s not clear what the
security enhancements are, but Microchip
states they are “implemented in the device
[and] are largely behind the scenes and are
not directly observable during normal
operation.” Unfortunately, there is no open
source analysis of what these changes are but
Microchip recommends the ATECC608B for
new designs.

Cypherock’s Response

ATECC608B is fully compatible with ATECC608A
interfacing but wasn't available when we
procured it. We plan on using the latest
versions based on the part's availability.

 5) No Potting on Security-Relevant Circuitry

 (Severity: Low)

KeyLabs Unmodified Report

There is no potting material inside the
enclosure. The device is not meant to be user-
serviceable therefore, there is no reason it
should be opened. While epoxy potting
material can be removed, it is incredibly
tedious and risks destroying the device while
removing the material, which also helps
protect the key split. Additionally, it provides
environmental protection to the components
on the PCB as well. The final release version of
the hardware will utilize conformal coating.
Though this is not the same as epoxy coating, it
is a good tradeoff in practice.

Cypherock’s Response

We are using conformal coating on the PCB for
reliability and reducing accessibility. We will
use potting material on MCU and the ATECC to
make it even harder for an attacker to get
hardware access.

 6) Device Lacks Tamper-Evidence, Tamper-

 Resistance and Tamper Circuitry (Severity: Low)

KeyLabs Unmodified Report

Both the case and the device PCB lack tamper
evidence. For example, the device keys are not
erased through opening the physical device
case. The device continues to operate
nominally even though the physical integrity of
the surrounding case has been compromised.
This helps to protect against hardware implant
attacks as well as aiding in detecting evil maid
attacks. Production devices will be
ultrasonically welded, which will in practice
make opening the device more difficult.

Cypherock’s Response

The X1 Wallet is externally powered, meaning
any tamper circuitry can be easily spoofed.
Also, tamper evidence and tamper resistance
methods like tapes and stickers have been
proven ineffective and very cheap to
reproduce. We instead use the device's
enclosure as tamper evidence. When
assembling the X1 Wallet, the enclosure is
ultrasonically welded, meaning the top and
bottom parts are fused completely. In practice,
ultrasonically welded enclosures once opened
leave visible marks.

 7) Functions should use strnlen, not strlen

 (Severity: Low)

KeyLabs Unmodified Report

Some functions9 within the X1 wallet firmware
use strlen instead of strnlen. In the majority of
cases this can easily be fixed with find and
replace.

Cypherock’s Response

We have fixed this issue and will be available in
our upcoming release.

Ref: , Link 1 Link 2

 8) Device PIN recovery

 (Severity: Informational)

KeyLabs Unmodified Report

Cypherock implements a Proof of Work
algorithm in the case of a forgotten PIN.10 This is
of course a security critical function, however
upon review of this algorithm, we are not sure it
is needed. Presumably, the point of this process
is that it prevents a denial of service from a
malicious user who guesses random PINs on
the device. Unfortunately, this approach seems
needlessly complex. After about 12 incorrect
entries, the delay to enter the next PIN is
incredibly long, which effectively permanently
locks the device. Additionally, the approach
constantly writes to the same flash sector. This
is because the status of the proof of work is
updated in flash. The flash page only has a
write endurance of 10k writes. Therefore, even if
the authorized user can recover the PIN, after
waiting quite a while, the device may later
catastrophically fail when a flash write occurs.
Therefore, it’s not clear if this is better than just
hard-locking the wallet after 5 or so guesses.

Cypherock’s Response

Cypherock X1 is designed such that the user
does not need to keep another backup, for this
reason, we don’t believe erasing the seed-
phrases from the X1 Cards is the best solution
in case of wrong pin entry. It might then be
easier for the user herself to mistakenly delete
the wallet and at the same time easier for the
hacker as well to DOS the user. Instead, each
card has 3 retry attempts after which the
wallet in that card is locked. The wallet
unlocking requires a hashing process on the
device with exponentially increasing difficulty
and time required on each wrong attempt.

Though it is not a security vulnerability, we
have planned to resolve the issue related to
proof of work status repeated flash write. The
fix will be available in upcoming firmware
releases.

8 http://ww1.microchip.com/downloads/en/Appnotes/Migrating-from-the-ATECC608A-to-the-ATECC608B-DS40002237A.pdf

9 https://github.com/Cypherock/x1wallet_firmware/blob/28f729745892a5278e65b0047937b15

10 https://github.com/Cypherock/x1wallet_firmware/blob/v0.3.12/docs/cylock__proof_of_work

Page 7

http://cypherock.com
http://keylabs.io
http://keylabs.io/cypherock
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/group0/75/95/53/70/8d/2e/4d/79/flyerstm32trust/files/flstm32trust.pdf/jcr:content/translations/en.flstm32trust.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/group0/75/95/53/70/8d/2e/4d/79/flyerstm32trust/files/flstm32trust.pdf/jcr:content/translations/en.flstm32trust.pdf
https://www.st.com/resource/en/application_note/an4968-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4968-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://github.com/Coldcard/firmware/blob/d7c41ce88ee06864583574d87b25e3edf4573041/stm32/bootloader/storage.c#L503
https://github.com/Cypherock/x1_wallet_hal_stm32/compare/a43742faa4ad672dfdcd27262e023d2745a711a1...88951eb53916feac020cdacab08604d8945b6391#diff-f6a815642ee8e0c601398615e95ca1e72aa6d2a2a342f7241cc9b856ba7cb734L825-L859
https://github.com/Cypherock/x1_wallet_firmware/blob/b24cb89ba1906b88cbb93e9765fadc96377024d3/common/libraries/util/utils.c#L276-L299
https://github.com/Cypherock/x1wallet_firmware/blob/761a8ce86ed7a797ffd285ecd11c9db8dbcb96da/common/libraries/util/utils.c#L275
https://github.com/Cypherock/x1wallet_hal_stm32/blob/024f8a631d9b62cd0223e413ba605fc70bcb3a22/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rng.c#L657
https://github.com/Cypherock/x1wallet_hal_stm32/blob/024f8a631d9b62cd0223e413ba605fc70bcb3a22/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rng.c#L657
https://github.com/Cypherock/x1wallet_bootloader/blob/579c4c507d335848acb75fb277a1c1103c882f2a/Application/Bootloader/random_gen/crypto_random.c#L47
https://github.com/Cypherock/x1wallet_bootloader/blob/579c4c507d335848acb75fb277a1c1103c882f2a/Application/Bootloader/random_gen/crypto_random.c#L47
https://github.com/Cypherock/x1_wallet_firmware/blob/main/docs/device_provision_auth.md
https://github.com/Cypherock/x1_wallet_firmware/pull/52/commits/99431bfee610961c02d70d740ff4c17f682ee8a7
https://github.com/Cypherock/x1_wallet_firmware/pull/52/commits/bd521a8980a8d0c429907b71ce57358c17eb9fc4
http://ww1.microchip.com/downloads/en/Appnotes/Migrating-from-the-ATECC608A-to-the-ATECC608B-DS40002237A.pdf
https://github.com/Cypherock/x1wallet_firmware/blob/28f729745892a5278e65b0047937b15
https://github.com/Cypherock/x1wallet_firmware/blob/v0.3.12/docs/cylock__proof_of_work

